a2 United States Patent
Alpert et al.

US009092591B2

US 9,092,591 B2
*Jul. 28, 2015

(10) Patent No.:
(45) Date of Patent:

(54) AUTOMATIC GENERATION OF WIRE TAG

LISTS FOR A METAL STACK
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)
(72) Inventors: Charles J. Alpert, Austin, TX (US);
Robert M. Averill, ITII, Wappingers
Falls, NY (US); Eric J. Fluhr, Round
Rock, TX (US); Zhuo Li, Cedar Park,
TX (US); Tuhin Mahmud, Austin, TX
(US); Jose L. P. Neves, Poughkeepsie,
NY (US); Stephen T. Quay, Austin, TX
(US); Chin Ngai Sze, Austin, TX (US);
Yaoguang Wei, Austin, TX (US)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.
(21) Appl. No.: 14/249,765
(22) Filed: Apr. 10, 2014
(65) Prior Publication Data
US 2014/0223397 Al Aug. 7,2014
Related U.S. Application Data
(63) Continuation of application No. 13/737,231, filed on
Jan. 9, 2013, now Pat. No. 8,769,468.
(51) Imt.ClL
GO6F 17/50 (2006.01)
(52) US.CL
CPC GO6F 17/5077 (2013.01); GO6F 17/505
(2013.01)
(START
Y
RECEIVE
TECHNOLOGY
METAL STACK AND
WIRECODES
810
GENE'RATE
VERBOSE FULL
LAYER TRAIT
LIBRARY
820
- v
PRUNE LAYER TRAIT
LIBRARY TO REMOVE|
REDUNDANCIES TO
GENERATE FIRST
PRUNED LiBRARY
830
PERFORM
CLUSTERING BASED
ON RC PARASITICS
TO GENERATE
SECOND PRUNED
LIBRARY
40
Y
PERFORM COARSE
LEVEL CLUSTERING
'TO GENERATE THRID———
PRUNED LIBRARY
850

(58) Field of Classification Search
USPC 716/130
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,151,867 A * 9/1992 Hooperetal. ... 716/104
6,189,131 Bl 2/2001 Graef et al.
6,560,752 Bl 5/2003 Alpert et al.
6,587,991 Bl 7/2003 Mbouombouo et al.
6,817,000 B2* 11/2004 Richetal.ccccceonene. 716/108
7,853,915 B2 12/2010 Saxena et al.
7,895,557 B2 2/2011 Alpert et al.
7,984,406 B2 7/2011 Akamine et al.

(Continued)

OTHER PUBLICATIONS
U.S. Appl. No. 13/737,231.
(Continued)

Primary Examiner — Jack Chiang

Assistant Examiner — Brandon Bowers

(74) Attorney, Agent, or Firm — Francis Lammes; Stephen J.
Walder, Jr.; William J. Stock

(57) ABSTRACT

Mechanisms are provided for pruning a layer trait library for
use in wire routing in an integrated circuit design process. The
mechanisms receive a plurality of wirecodes and a metal
stack definition. The mechanisms generate a verbose layer
trait library based on all possible combinations of the wire-
codes and layers of the metal stack definition. The mecha-
nisms generate a pruned layer trait library by pruning the
verbose layer trait library to remove redundant layer traits
from the verbose layer trait library. In addition, the mecha-
nisms store the pruned layer trait library for performing wire
routing of an integrated circuit design.

19 Claims, 7 Drawing Sheets

STORE PRUNED
LIBRARIES FOR
——»{ LATER USE IN WIRE
ROUTING

860

N T

FROVIDE PRUNED
LIBRARIES TO WIRE
ROUTER WHICH
GENERATES
ROUTING FOR 1
DESIGN BASED ON
PRUNED LIBRARIES
870

FABRICATE IC
DEVICE USING iC
DESIGN INCLUDING
WIRE ROUTINGS
GENERATED LUSING
PRUNED LIBRARIES

US 9,092,591 B2
Page 2

(56)

7,996,808
8,127,260
8,370,783
2005/0097488
2009/0106709
2011/0252391
2012/0240093

References Cited

U.S. PATENT DOCUMENTS

B2 8/2011
Bl 2/2012
B2 2/2013
Al* 5/2005
Al* 4/2009
Al 10/2011
Al 9/2012

Arp et al.
Song et al.

Uchino et al.

Lakshmanan et al. 716/7
Carney etal.cccecoeenne 716/2
Arimoto

Alpert et al.

OTHER PUBLICATIONS

“A method to efficiently use unbalanced layer stacks to reduce timing
and routing variation”, ip.com, [PCOMO000215402D, Feb. 26, 2012,
1 page.

Moffitt, Michael D. et al., “Wire Synthesizable Global Routing for
Timing Closure”, IEEE, 2011, pp. 545-550.

* cited by examiner

U.S. Patent Jul. 28, 2015 Sheet 1 of 7 US 9,092,591 B2
104
106
Fid 1
206~ [PROCESSING 200
UNIT(S)
210 o0 208 218 236
L ; ;
GRAPHICS n MAIN AUDIO .
prROCESSOR 1 NPMCH =0 yemory ADAPTER S0
204
240 N 238
BU
N eus SBACH us [
USB AND KEYBOARD
\'fi ; r; &
nisk || co-rom igl;??: OTHER ;g}ig; AND MOUSE | | monem || row
PORTS ADAPTER
226 230 242 232 234 220 292 224

FiG. 2

U.S. Patent Jul. 28, 2015 Sheet 2 of 7 US 9,092,591 B2

LAYERS '

LAYERS e
306

LAYERS J AR

“od
SO

3%
LAYERS 4 -
KIEW =
23
= SRS ;
- 2% -
- y e
4 ;
ey e
$A8 <
I L £
EES { —F & ¥
\

130 G0 nwr £5 45 nm 32 nm

FiG. 3

U.S. Patent Jul. 28, 2015 Sheet 3 of 7 US 9,092,591 B2

400

X3

X2
8X

X1

FIG. 4 E3

B2

4X
£1

B2

2X B1
M5

M1
X

U.S. Patent Jul. 28, 2015 Sheet 4 of 7 US 9,092,591 B2

W10510L10 M2 X3, W10S10L1D M4 X3, W10S10L1D B1 X3;
W20520L15 B X3, W10G20L17 B1 X3, W10S30L17 B1 X3,

W10SB0L17 B1 X3, W20510L17 B1 X3, W20520L17 B1 X3, 10
W20540L17 B1 X3, W30G10L17 B1 X3, W30515L17 B1 X3,
W10S10L10 M2 X3, W10S10L1D B1 X3, W20520L15 B1 X3;
W10820017 B1 X3, W20510L17 B1 X3, W20820L17 B1 X3, 520
W30S10L17 B1 X3,

W10S10L10 M2 X3, W10510L1D B1 X3, W10820017 B1 X3; 530
W20520017 B1)G; =
W10810L1D M2 X3, W10S10L1D B1 X3; 340

FiG. 5

US 9,092,591 B2

Sheet S of 7

Jul. 28, 2015

U.S. Patent

9 DA
oo uonssbuoy
P!
0¥
. O
1sonuonsabuon 0O \
<
(e9 7eY 68
Hors jede suieg
oy uonsebucy
979 ¥29 779
o3 829
eaie Buino: sweg
o uonsaiucy
d
) s CX L8 2101 80eM
EX1E1110c50 gf £ 18 21101802M
EXHELLI0PS0ZM — 0 o O _”N A —
£X LE AL0880M — 0 \ﬁ_ LA
019 EX 19 LG S0EM RD

£X 189 41702501
EX L8 210801

O

S LG CLI0LSOLAM EX YN GLT0ISOIM

X T QLI0LSO0LM

1500 Buius |

1800 Bulus

1800 Dulun |

1800 Bun

U.S. Patent

Jul. 28, 2015 Sheet 6 of 7 US 9,092,591 B2
708
INITIAL LAYER TRAIT SRUNING LAYER
LIBRARY
TRAIT LIBRARY
GENERATION bR
CONTROLLER ENGINE TURAGE SYSTEM
14q 730 30

~

P

I

—

|

N E—

T

= _~

=~ _~

COMMUNICATION
INTERFACE
720

PRUNING ENGINE

740

A

\ 4

WIRE ROUTER
180

IC DESIGN SYSTEM
780

FIG.

7

U.S. Patent Jul. 28, 2015

< START >
v

RECEIVE
TECHNOLOGY
METAL STACK AND
WIRECODES
810

v

GENERATE
VERBOSE FULL
LAYER TRAIT
LIBRARY
820

v

PRUNE LAYER TRAIT
LIBRARY TO REMOVE
REDUNRANCIES TO
GENERATE FIRST
PRUNED LIBRARY
830

v

PERFORM
CLUSTERING BASED
ON RC PARASITICS
TO GENERATE
SECOND PRUNED
LIBRARY
840

v

PERFORM COARSE
LEVEL CLUSTERING

Sheet 7 of 7

FiG. &

STORE PRUNED
LIBRARIES FOR
LATER USE IN WIRE
ROUTING
360

A

PROVIDE PRUNED
LIBRARIES TO WIRE
ROUTER WHICH
GENERATES
ROUHING FORIC
DESIGN BASED ON
PRUNED LIBRARIES
870

A
FABRICATEIC
DEVICE USING IC
DESIGN INCLUDING
WIRE ROUTINGS
GENERATED USING
PRUNED LIBRARIES
380

TO GENERATE THRID
PRUNED LIBRARY
850

v
< END)

US 9,092,591 B2

US 9,092,591 B2

1
AUTOMATIC GENERATION OF WIRE TAG
LISTS FOR A METAL STACK

BACKGROUND

The present application relates generally to an improved
data processing apparatus and method and more specifically
to mechanisms for automatically generating a list of wire tags
for chip design optimization and routing for a given technol-
ogy metal stack.

Modern day electronics include components that use inte-
grated circuits. Integrated circuits are electronic circuits
formed using silicon as a substrate with added impurities to
form solid-state electronic devices, such as transistors,
diodes, and resistors. Commonly known as a “chip”, an inte-
grated circuit is generally encased in hard plastic. The com-
ponents in modern day electronics generally appear to be
rectangular black plastic pellets with connector pins protrud-
ing from the plastic encasement.

Circuit designers use a variety of software tools to design
electronic circuits that accomplish an intended task. For
example, a digital circuit may be designed to accept digital
inputs, perform some computation, and produce a digital
output. An analog circuit may be designed to accept analog
signals, manipulate the analog signals, such as my amplify-
ing, filtering, or mixing the signals, and produce an analog or
digital output. Generally, any type of circuit can be designed
as an integrated circuit (IC).

The software tools used for designing ICs produce,
manipulate, or otherwise work with the circuit layout at very
small scales. Some of the components that such a tool may
manipulate may only measure tens of nanometer across when
formed in silicon. The designs produced and manipulated
using these software tools are complex, often including mil-
lions of such components interconnected to form an intended
electronic circuit. Such an interconnected group of compo-
nents is called a net.

The software tools manipulate these components at the
components level, or at the level of blocks of components, i.e.
block level. A block of components is also known as a cell.
One way of identifying cells in an IC design is to overlay a
grid of imaginary vertical and horizontal lines on the design,
and deeming each portion of the IC design bound by horizon-
tal and vertical lines as a cell. The horizontal or vertical lines
bounding a cell are called cut-lines. Cells formed in this
manner are commonly known as global routing cells, or
g-cells. Imposing such a grid on an IC design abstracts the
global routing problem away from the actual wire implemen-
tation and gives a more mathematical representation of the
task. A net may span one or more cells and may cross several
cut lines.

An IC design software tool can, among other functions,
manipulate cells, or interconnect components of one cell with
components of other cells, so as to form nets. The intercon-
nects between components are called wires. A wire is a con-
nection between parts of electronic components, and is
formed using a metallic material that conducts electricity.

One aspect of IC design is referred to as the placement
problem, i.e. the problem of placing the cells of a chip such
that the design meets all the design parameters of the chip.
Routing is the process of connecting the pins after placement.
In other words, placement results in a rendering of the com-
ponents of various cells as being located in certain positions
in the design, whereas routing results in a rendering of how
the metal layers would be populated with that placement. A

10

15

20

25

30

35

40

45

50

55

60

65

2

wire can be designed to take any one of the several available
paths in a design. Placement of a wire on a certain path, or
track, is a part of routing.

A layer is typically designated to accommodate wires of a
certain width, (wirecode). Generally, the wider the wire width
of'alayer, and the thicker the wire height of a layer, the faster
the signal propagation speed for the net routed on that layer.
Faster layers, to wit, layers with larger wire widths or higher
wire height, can accommodate fewer components or nets as
compared to slower layers with narrower wire widths.

A router is a component of an IC design tool that performs
the routing function. Once the placement component, known
as a “placer,” has performed the placement function, the
router attempts to connect the wires without causing conges-
tion. For example, if a design parameter calls for no more than
five wires in a given area, the router attempts to honor that
restriction in configuring the wiring. Such limitations on the
wiring are a type of design constraints and are called conges-
tion constraints. Other types of design constraints may
include, for example, blocked areas——cell areas where wires
may not be routed.

A global router divides the routing region into small tiles
and attempts to route nets through the tiles such that no tile
overflows its capacity. After global routing, wires must be
assigned to actual tracks within each tile, followed by detail
routing which must connect each global route to the actual pin
shape on the cell. Another type of router, known as the
“detailed router,” performs the detailed routing. The global
and detailed routing produced during the design process is
collectively referred to as “routing” and is usually further
modified during optimization of the design.

SUMMARY

In one illustrative embodiment, a method, in a data pro-
cessing system, is provided for pruning a layer trait library for
use in wire routing in an integrated circuit design process. The
method comprises receiving a plurality of wirecodes and a
metal stack definition. The method also comprises generating
a verbose layer trait library based on all possible combina-
tions of the wirecodes and layers of the metal stack definition.
The method further comprises generating a pruned layer trait
library by pruning the verbose layer trait library to remove
redundant layer traits from the verbose layer trait library. In
addition, the method comprises storing the pruned layer trait
library for performing optimization (such as repeat insertion)
and wire routing of an integrated circuit design.

In other illustrative embodiments, a computer program
product comprising a computer useable or readable medium
having a computer readable program is provided. The com-
puter readable program, when executed on a computing
device, causes the computing device to perform various ones
of, and combinations of, the operations outlined above with
regard to the method illustrative embodiment.

In yet another illustrative embodiment, a system/apparatus
is provided. The system/apparatus may comprise one or more
processors and a memory coupled to the one or more proces-
sors. The memory may comprise instructions which, when
executed by the one or more processors, cause the one or more
processors to perform various ones of, and combinations of,
the operations outlined above with regard to the method illus-
trative embodiment.

These and other features and advantages of the present
invention will be described in, or will become apparent to

US 9,092,591 B2

3

those of ordinary skill in the art in view of, the following
detailed description of the example embodiments of the
present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The invention, as well as a preferred mode of use and
further objectives and advantages thereof, will best be under-
stood by reference to the following detailed description of
illustrative embodiments when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 is an example diagram of a distributed data process-
ing system in which aspects of the illustrative embodiments
may be implemented;

FIG. 2 is an example block diagram of a computing device
in which aspects of the illustrative embodiments may be
implemented;

FIG. 3 is a block diagram of various types of layers in an
integrated circuit (IC) design with respect to which an illus-
trative embodiment may be implemented is illustrated;

FIG. 4 is a block diagram of a single metal stack for a given
technology used to explain the definition of a layer trait in
accordance with one illustrative embodiment;

FIG. 5 which illustrates various layer trait listings at dif-
ferent levels of pruning in accordance with one illustrative
embodiment;

FIG. 6 illustrates plots 610-640 of layer traits for further
illustrating the pruning process at different levels of pruning
in accordance with one illustrative embodiment;

FIG. 7 is an example block diagram of a layer trait library
pruning engine in accordance with one illustrative embodi-
ment; and

FIG. 8 is a flowchart outlining an example operation for
pruning a layer trait library in accordance with one illustrative
embodiment.

DETAILED DESCRIPTION

The illustrative embodiments provide mechanisms for
automatically generating a list of wire tags for chip design
optimization and routing for a given technology metal stack.
The mechanisms of the illustrative embodiment, for a given
technology metal stack, determines an initial verbose full
layer trait list by exploring all layers of the metal stack and all
possible wirecodes for the technology stack. This initial ver-
bose full layer trait list is then pruned according to timing and
congestion costs. Different levels of a layer trait library are
built from the pruned layer trait list through clustering non-
redundant layer traits based on different requirements at dif-
ferent stages of the design flow. A more coarse layer trait
library may be used early on in the design flow while a more
fine grain layer trait library may be used in later stages of the
design flow.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method,
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in any
one or more computer readable medium(s) having computer
usable program code embodied thereon.

15

25

30

40

45

50

55

4

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, device, or any suitable combination of the
foregoing. More specific examples (a non-exhaustive list) of
the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store
a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in a baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Computer code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, radio
frequency (RF), etc., or any suitable combination thereof.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java™,
Smalltalk™, C++, or the like, and conventional procedural
programming languages, such as the “C” programming lan-
guage or similar programming languages. The program code
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer, or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to the illustrative embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

US 9,092,591 B2

5

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions that implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus, or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

Thus, the illustrative embodiments may be utilized in many
different types of data processing environments. In order to
provide a context for the description of the specific elements
and functionality of the illustrative embodiments, FIGS. 1
and 2 are provided hereafter as example environments in
which aspects of the illustrative embodiments may be imple-
mented. It should be appreciated that FIGS. 1 and 2 are only
examples and are not intended to assert or imply any limita-
tion with regard to the environments in which aspects or
embodiments of the present invention may be implemented.
Many modifications to the depicted environments may be
made without departing from the spirit and scope of the
present invention.

FIG. 1 depicts a pictorial representation of an example
distributed data processing system in which aspects of the
illustrative embodiments may be implemented. Distributed
data processing system 100 may include a network of com-
puters in which aspects of the illustrative embodiments may
be implemented. The distributed data processing system 100
contains at least one network 102, which is the medium used
to provide communication links between various devices and
computers connected together within distributed data pro-
cessing system 100. The network 102 may include connec-
tions, such as wire, wireless communication links, or fiber
optic cables.

In the depicted example, server 104 and server 106 are
connected to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for
example, personal computers, network computers, or the like.

20

25

30

40

45

50

55

6

In the depicted example, server 104 provides data, such as
boot files, operating system images, and applications to the
clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 in the depicted example. Distributed data
processing system 100 may include additional servers, cli-
ents, and other devices not shown.

In the depicted example, distributed data processing sys-
tem 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data com-
munication lines between major nodes or host computers,
consisting of thousands of commercial, governmental, edu-
cational and other computer systems that route data and mes-
sages. Of course, the distributed data processing system 100
may also be implemented to include a number of different
types of networks, such as for example, an intranet, a local
area network (LAN), a wide area network (WAN), or the like.
As stated above, FIG. 1 is intended as an example, not as an
architectural limitation for different embodiments of the
present invention, and therefore, the particular elements
shown in FIG. 1 should not be considered limiting with regard
to the environments in which the illustrative embodiments of
the present invention may be implemented.

FIG. 2 is a block diagram of an example data processing
system in which aspects of the illustrative embodiments may
be implemented. Data processing system 200 is an example
of'a computer, such as client 110 in FIG. 1, in which computer
usable code or instructions implementing the processes for
illustrative embodiments of the present invention may be
located.

In the depicted example, data processing system 200
employs a hub architecture including north bridge and
memory controller hub (NB/MCH) 202 and south bridge and
input/output (1/O) controller hub (SB/ICH) 204. Processing
unit 206, main memory 208, and graphics processor 210 are
connected to NB/MCH 202. Graphics processor 210 may be
connected to NB/MCH 202 through an accelerated graphics
port (AGP).

Inthe depicted example, local area network (LAN) adapter
212 connects to SB/ICH 204. Audio adapter 216, keyboard
and mouse adapter 220, modem 222, read only memory
(ROM) 224, hard disk drive (HDD) 226, CD-ROM drive 230,
universal serial bus (USB) ports and other communication
ports 232, and PCI/PCle devices 234 connect to SB/ICH 204
through bus 238 and bus 240. PCI/PCle devices may include,
for example, Ethernet adapters, add-in cards, and PC cards for
notebook computers. PCI uses a card bus controller, while
PCle does not. ROM 224 may be, for example, a flash basic
input/output system (BIOS).

HDD 226 and CD-ROM drive 230 connect to SB/ICH 204
through bus 240. HDD 226 and CD-ROM drive 230 may use,
for example, an integrated drive electronics (IDE) or serial
advanced technology attachment (SATA) interface. Super [/O
(SI10) device 236 may be connected to SB/ICH 204.

An operating system runs on processing unit 206. The
operating system coordinates and provides control of various
components within the data processing system 200 in FIG. 2.
As a client, the operating system may be a commercially
available operating system such as Microsoft® Windows 7®.
An object-oriented programming system, such as the Java™
programming system, may run in conjunction with the oper-
ating system and provides calls to the operating system from
Java™ programs or applications executing on data processing
system 200.

US 9,092,591 B2

7

As a server, data processing system 200 may be, for
example, an IBM® eServer™ System P® computer system,
running the Advanced Interactive Executive (AIX®) operat-
ing system or the LINUX® operating system, Data process-
ing system 200 may be a symmetric multiprocessor (SMP)
system including a plurality of processors in processing unit
206. Alternatively, a single processor system may be
employed.

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as HDD 226, and may be
loaded into main memory 208 for execution by processing
unit 206. The processes for illustrative embodiments of the
present invention may be performed by processing unit 206
using computer usable program code, which may be located
in a memory such as, for example, main memory 208, ROM
224, or in one or more peripheral devices 226 and 230, for
example.

A bus system, such as bus 238 or bus 240 as shown in FIG.
2, may be comprised of one or more buses. Of course, the bus
system may be implemented using any type of communica-
tion fabric or architecture that provides for a transfer of data
between different components or devices attached to the fab-
ric or architecture. A communication unit, such as modem
222 or network adapter 212 of FIG. 2, may include one or
more devices used to transmit and receive data. A memory
may be, for example, main memory 208, ROM 224, oracache
such as found in NB/MCH 202 in FIG. 2.

Those of ordinary skill in the art will appreciate that the
hardware in FIGS. 1 and 2 may vary depending on the imple-
mentation. Other internal hardware or peripheral devices,
such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used in addition to or
in place of the hardware depicted in FIGS. 1 and 2. Also, the
processes of the illustrative embodiments may be applied to a
multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the present invention.

Moreover, the data processing system 200 may take the
form of any of a number of different data processing systems
including client computing devices, server computing
devices, a tablet computer, laptop computer, telephone or
other communication device, a personal digital assistant
(PDA), or the like. In some illustrative examples, data pro-
cessing system 200 may be a portable computing device that
is configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-gener-
ated data, for example. Essentially, data processing system
200 may be any known or later developed data processing
system without architectural limitation.

Referring again to FIG. 1, one or more of the server com-
puting devices 104, 106 may operate to provide VLSI design
mechanisms that may include the mechanism of the illustra-
tive embodiment employed to assist in simplifying synthesis
and wire routing design flows. The data for use in performing
the operations of the mechanisms of the illustrative embodi-
ments may be provided in storage systems associated with the
server computing devices 104, 106, stored in network
attached storage 108, or provided by client computing
devices 110-114 which may communicate with the servers
104, 106 via the network 102, such as to provide user input to
configure or otherwise direct the operation of the VL.SI design
mechanism.

The VLSI design mechanism of the server 104, 106
includes a layer trait library pruning mechanism in accor-
dance with the illustrative embodiments. The layer trait
library pruning mechanism reduces the size of the layer trait

10

20

25

30

35

40

45

50

55

60

65

8

library considered when performing synthesis and wire rout-
ing as part of the VL.SI design flow. The implementation of the
layer trait library pruning mechanism operates based on the
observation that the runtime of optimization tools used in
synthesis and wire routings is proportional to the number of
layer traits considered during the execution of the optimiza-
tion tool. Thus, the layer trait library pruning mechanism of
the illustrative embodiments seeks to reduce the size of the
layer trait library while still including appropriate layer traits
to cover the desired technology metal stack wiring possibili-
ties that are non-redundant and have the lowest timing and
congestion values, and the best parasitic (RC) values.

With reference now to FIG. 3, a block diagram of various
types of layers in an integrated circuit (IC) design with respect
to which an illustrative embodiment may be implemented is
illustrated. The particular set of metal layers actually used in
an IC design is based on the particular technology used in the
design. Wider and thicker metal stacks allow for larger wir-
ings and reduce resistance. Referring to FIG. 3, routing can be
performed on layers 302, 304, 306, 308, or 310 using a wire
routing tool or a VLSI design mechanism, such as may be
executed on one or more of the servers 104, 106 in FIG. 1.

As an example, the half pitch of a typical memory cell may
be 45 nm. The minimum metal width on a 1x layer is usually
approximately two times that half pitch, thus equaling
approximately 90 nm in this example. A 1.3x layer accom-
modates a route width that is one hundred thirty percent of the
width on a 1x layer. Similarly, a 2x layer accommodates a
route width that is twice the width on a 1x layer. A 4x layer
accommodates a route width that is four times the widthon a
1x layer. A 10x layer accommodates a route width that is ten
times the width on a 1x layer. A 16x layer accommodates a
route width that is sixteen times the width on a 1x layer. In
fact, the thickness of different layers is different, which is
another reason why the layers have different propagation
speeds.

Layers 302 represent a set of 1x layers as is typically
available for routing a 130 nanometer (nm) IC design. Layers
304 represent a set of 1x layers and 2x layers as is typically
available for routing a 90 nanometer (nm) IC design. Layers
306 represent a set of 1x layers, 2x layers, and 4x layers, as is
typically available for routing a 65 nanometer (nm) IC design.
Layers 308 represent a set of 1x layers, 1.3x layers, 2x layers,
4x layers, and 10x layers, as is typically available for routing
a 45 nanometer (nm) IC design. Layers 310 represent a set of
1x layers, 2x layers, 4x layers, and 16x layers, as is typically
available for routing a 32 nanometer (nm) IC design.

A wider route width translates into a faster net, which
means an electrical signal transmits faster on such a net.
Accordingly, the signal on a net routed on a 2x layer will be
faster than the signal on the same net on a 1x layer; a net
routed on a 4x layer will be faster than the same net on a 2x
layer; and so on.

A faster layer also has scarcer resources. In other words, a
faster layer accommodates fewer components due to the
larger route widths. Therefore, even when fast nets are desir-
able, such as for meeting a timing constraint, not all the nets
can be placed on the fastest (top) layers, as doing so will cause
increased congestion on those layers. Placing the nets on
slower (lower) layers may reduce the congestion problem, but
causes the nets to perform comparatively slower. To meet
timing constraints with slow nets, the nets have to be buffered,
causing increased power consumption and design area.

A modern IC design can contain up to tens of millions of
nets. A designer usually assigns layer constraints to a fraction
of these nets, ranging from few hundred nets, to tens of
thousands or even more to achieve the timing closure. For

US 9,092,591 B2

9

designs with frequency at 3 to 5 G Hz, there could be more
than 20% of nets with layer constraints. The optimization step
of'the IC design process cannot predict what layers the router
will select for the given nets.

If the optimization step takes a pessimistic approach and
assumes that the wiring router will place the net on slower
layers, the optimization step introduces buffers in the nets to
overcome timing delays due to placement on the slower lay-
ers. By doing so, the circuit optimizer increases the power
consumed and the area occupied by the design. If the opti-
mizer takes an optimistic approach and assumes that the
router will place the nets on the higher layers, the optimizer is
faced with congestion on the higher layers and a hard-to-
recover post-routing timing problem. Thus, there is a need to
perform a tradeoff between congestion and timing when per-
forming routing of wires in an IC design.

FIG. 4 is a block diagram of a single metal stack for a given
technology used to explain the definition of a layer trait in
accordance with one illustrative embodiment. As shown in
FIG. 4, the metal stack 400 is comprised of a plurality of metal
layers which may have different widths/thicknesses, similar
to that shown in FIG. 3, for example. Traversing from bottom
to top of the metal stack 400, the lower layers M1-MS5 repre-
sent a thinnest metal layer (1x layer), where “Ix” means a
single width/spacing, “2x” means a double width/spacing,
“4x” is a quadruple width/spacing, and so on. These lower
layers have relatively the worst resistance-capacitance (RC)
parasitics for routing purposes. The second set of layers,
designated B1 to B2, are of a 2x layer type, followed by the
third set of layers, designated E1 to E3, which are 4x metal
layers. Finally, the thickest metal layers X1 to X3 are 8x metal
layers in this example.

With this type of metal stack 400 arrangement, the layer
trait defines the routing layer [L, U] (where L is the lower
layer and U is the upper layer) and the wirecode that defines
the wire width and spacing on every layer. The layer trait is
essentially a contract between wire routing optimizations and
synthesis tools. That is the range [L, U] is the hard constraint
for the wire router to obey. Synthesis uses RC on the lower
layer L and the next higher layer L.+1 for timing estimation
using, for example, a Steiner tree based timing and buffer
insertion algorithm. One can also use the average RC value of
all layers, or a certain set of layers, for timing estimation and
optimization.

Anexample of alayer trait may be of the type W10S10L 1D
M2 X3. The “W10S10L1D” is the wirecode while the “M2
X3” is the layer range [L, U]. The “W10” indicates that wires
corresponding to this layer trait have a 1 x width and the “S10”
indicates that the wires have a spacing of 1x. The “L1D”
indicates layers 1 to D (in hexadecimal format—D corre-
sponding to metal layer X3 in FIG. 4). The wirecode is used
by the wiring router when performing wiring optimizations
on the IC design. For purposes of synthesis, in this wirecode
example, the M2 and M3, i.e. the L. and [.+1, layers of the
stack 400 are used to determine the RC parasitics of the IC
design for Steiner tree timing and buffer insertion optimiza-
tions. Without loss of generality, the Steiner routes could also
use other ways to determine the RC parasitics, such as an
average of all layers.

As another example of a layer trait, consider the layer trait
W20S20L17 B1 X3. The layer range B1 to X3 indicates that
below layer B1 only a via is present for this layer trait and the
wirecode indicates that this via has a width of 2x. The wires
on layers B1 to B2 (i.e. layer 7 in the “L.17” portion of the
wirecode) have 2x width and spacing and wires on higher
layers than B2 have single width and spacing, by a default
setting. That is, if the width for a layer is not specified in the

10

15

20

25

30

35

40

45

50

55

60

10

layer trait, then a default setting may be utilized which, for
example, may be set to a single width or other pre-defined
width setting. One could also augment the definition and
make sure all layers are covered, such as
W20S20L17_W10S10L8D, forexample. In this example, for
purposes of the Steiner timing and buffer insertion optimiza-
tions, the double width/spacing of layers B1 and B2, i.e.
layers L and L+1, are used to estimate the RC parasitics for
the IC design, or the average of other layers if one used a
different Steiner estimation methodology.

It should be appreciated that for a specified technology,
e.g., a specified metal stack configuration such as one of the
stacks for 32 nm to 130 nm in FIG. 3, there may be a large
number of possible layer traits that may be used when per-
forming wire routing optimization and synthesis. Typically a
verbose full layer trait list is generated by exploring all layers
and possible wirecodes for the given technology metal stack.
The synthesis runtime, however, is linear to the number of
layer traits considered. Thus, in order to reduce synthesis
runtime, it is desirable to reduce the number of layer traits
considered during synthesis. The present invention provides a
mechanism for pruning the verbose full layer trait list to
thereby reduce synthesis runtime.

To illustrate the operation of the layer trait list pruning
mechanisms of the illustrative embodiments, consider F1G. 5
which illustrates various layer trait listings at different levels
of'pruning in accordance with one illustrative embodiment. A
general overview description of this pruning process is pro-
vided here with reference to FIG. 5 and a more detailed
explanation of the mechanisms for performing the pruning
operation is provided thereafter.

As shown in FIG. 5, an initial layer trait listing 510, in this
example, includes 12 layer traits. This initial layer trait listing
510 may be obtained, for example, as described previously,
by exploring all combinations of all existing wirecodes and
layer traits. Some of these layer traits have the same or sub-
stantially similar RC parasitic characteristics and thus, an
initial pruning operation removes these redundant layer traits
from the layer trait listing to generate first pruned layer trait
listing 520. The particular layer trait to keep in the first pruned
layer trait listing 520 may be determined based on an analysis
of'the characteristics associated with the layer traits and com-
parison to identity which of the redundant layer traits pro-
vides better characteristics for wire routing and synthesis.

It should be noted that the RC parasitic of each layer trait is
known based on the technology profile associated with the IC
design. For example, one can simulate the delay of a given
length of a wire segment on a layer and determine the delay
value of this wire. If, in doing so, one wire is determined to be
of layer trait A, and another wire is of layer trait B, and after
delay simulation (one can use any delay calculator, such as
SPICE, or Elmore Delay), it is found that one wire is better
than the other wire with regard to performance and timing,
and has the same or less resource cost (area, power, etc.), then
lesser wire is redundant with regard to the better performing
wire.

For example, in the depicted example, the layer traits
W20S20L17 B1 X3 and W30S15L17 B1 X3 are redundant
due to the layer ranges being the same, i.e. Bl to X3, the
number of tracks used, delay and timing, and resource costs.
That is, looking at these two layer traits, it is determined that
these two layer traits cover a same layer range [B1, X3]. The
wirecodes indicate that the W20S20 layer trait uses 4 tracks
and the W30S15 uses 4.5 tracks (W30S15 indicates a 3x
width wiring layer with a 1.5x spacing). Through timing
simulation, it can be determined that W20S20 layer trait has
a better delay and timing performance than the W30S15 layer

US 9,092,591 B2

11

trait. Moreover, the W20S20 uses less area and thus, has a
lower resource cost. Therefore, W20S20 is the better layer
trait to keep and the W30S15 layer trait may be pruned as a
redundant layer trait.

In considering which of these two redundant layer traits to
keep in the first pruned layer trait list 520, various character-
istics such as time of flight, reach limit, coupling timing,
routing cost, and the like may be considered as part of the
analysis. In this context, the time of flight means, given a very
long wire, and if there is ideal buffering, the delay/mm for this
wirecode. Reach limit means, for a given slew limit, how far
a wire can go without another buffer on this layer trait. Cou-
pling timing means time-of-flight/reach limit when one con-
siders coupling capacitance. Route cost is generally the wire
pitch of this layer trait. For example, between the two layer
traits W20S20L17 B1 X3 and W30S15L.17 B1 X3, the time of
flight, reach length, coupling, and routing cost of
W20S20L17 are better than the W30S15L.17 layer trait. Thus,
of these two redundant layer traits, the one to keep in the
pruned layer trait listing 520 is the W20S20L.17 B1 X3 layer
trait.

This first pruned layer trait listing 520 comprises those
layer traits that are not redundant with regard to RC parasitics
for the most part. In the depicted example, the first pruned
layer trait listing 520 comprises 7 layer traits. It should be
appreciated that the first pruned layer trait listing 520 may
include some redundancies when there are unbalanced
stacks. These redundancies may be for boundary layer traits
that are kept in the first pruned layer trait listing 520. For
example, assume there are layers B1 B2 B3 E1, which means
that there are three 2x layers and one 4x layer, and one needs
to have a “B3 E1” pair, with W20S20L18, assuming there are
five 1x layers and three 2x layers. “W20S20L18 B3 E1”
means there are is a 2x layer “B3” and a 1x layer “E1.” This
will achieve a better balance of RC parasitics since there is
only one 4x layer.

A second pruned layer trait listing 530 may be generated by
further pruning the first pruned layer trait listing 520 to
remove layer traits having the same or similar congestion.
The congestion may be measured based on the wiring
resources used for each layer trait. For example, W20S20
takes 4 tracks, and W10S10 takes 2 tracks.

In the depicted example, pruning based on same or similar
congestion levels, results in a second pruned layer trait listing
530 that has 4 layer traits. The choice as to which layers,
having the same or similar congestion levels, to maintain in
the second pruned layer trait listing 530 may be performed
based on delay and all other statistics as previously described
above. For example, the methodology may select a layer trait
based only on the non-coupling timing and choose the layer
trait having the best non-coupling timing. Alternatively, the
methodology may choose a layer trait to maintain based on
routing area, timing cost, and/or the like. Any combination of
one or more of the characteristics previously discussed, or
other types of wire characteristics may be used as a decision
point for selecting one layer trait over another to keep in the
second pruned layer trait listing 530.

A third pruned layer trait listing 540 may be generated by
further pruning the second pruned layer trait listing 530 such
that there is single layer trait to cover each layer of the tech-
nology metal stack. If more than one layer trait is available to
select from, the selection of a single layer trait to cover layers
may be arbitrary, for example. As shown in FIG. 5, in this
example, this results in 2 layer traits.

Each of these layer trait listings 510-540 has a different
level of granularity. The verbose full layer trait listing 510 has
the finest granularity since the full spectrum of layer traits is

10

15

20

25

30

35

40

45

50

55

60

65

12

available for consideration. The third pruned layer trait listing
540 representing the coarsest granularity since only two pos-
sible layer traits are present for consideration during wire
routing and synthesis. As such, the third pruned layer trait
listing 540 is beneficial to use early on during the wire routing
and synthesis operations (such as placement, latch move-
ment, buffering, resizing and vt optimization) while the first
pruned layer trait listing 520 may be better used in the latter
stages of the wire routing and synthesis operations in order to
increase the speed by which this routing and synthesis may be
performed.

FIG. 6 illustrates plots 610-640 of layer traits for further
illustrating the pruning process at different levels of pruning
in accordance with one illustrative embodiment. Plot 610 in
FIG. 6 represents an initial verbose full layer trait listing with
the layer traits plotted according to their timing cost (or time
of flight) on the y-axis and congestion costs on the x-axis. It
should be appreciated that while FIG. 6 illustrates two-di-
mensional plots 610-640, the actual number of characteristics
considered may result in a three or more multi-dimensional
analysis as described hereafter. The plots 610-640 in FIG. 6
are shown as two dimensional simply to make it easier to
depict the plots and for ease of understanding.

As shown in plot 610 in FIG. 6, various ones of the layer
traits have the same or similar timing costs and congestion
costs. Redundancy of layer traits may be determined, for
example, by considering layer traits having a same or similar
congestion cost to be redundant, same or similar routing area,
same layer group, and/or the like. In one illustrative embodi-
ment, if two or more layer traits have a same or similar routing
area, or a same or similar layer group, then the two or more
layer traits are considered to be redundant and one or more of
these may be selected for pruning based on relative timing
costs and wire congestion. Thus, looking at sets 624, 626, and
628 in FIG. 6, for example, in each of these sets, which are
based on having a same or similar routing area, there are layer
traits that have timing costs and congestion costs that are
close, i.e. within a predetermined tolerance of one another, in
which one of the layer traits has a timing cost and/or conges-
tion that is higher than the other. In such a case, one of these
two layer traits is redundant with regard to the other layer
trait. For example, in set 624, one layer trait (the right most
layer trait) has a higher congestion but lower timing cost and
the other layer trait has a higher timing cost and lower con-
gestion. In sets 626 and 628, the two layer traits have a same
congestion but one layer trait has a higher timing cost than the
other. In this case, the layer trait in 624 having a higher timing
cost but lower congestion is selected (i.e. layer trait
WI10S10L1D B1 X3) while in sets 626 and 628, the layer
traits having the lower timing costs (i.e. layer traits
W20S10L17 B1 X3 and W30S10L17 B1 X3) are selected, as
shown in set 634, which is based on layer traits having a same
layer group.

As shown in plot 620 of FIG. 6, some of these redundant
layer traits are removed from the layer trait listing to generate
a first pruned layer trait listing. It should be appreciated that
not all of the redundant layer traits are necessarily removed,
since other criteria, such as coupling timing, routing cost, and
the like, may be considered to determine whether to keep the
layer trait in the first pruned layer trait listing or not. For
example, if one layer trait has a better relative coupling timing
than another, but the other layer trait has a better relative
routing cost, then both layer traits may be kept in the first
pruned layer trait listing in order to be able to consider both
optimizations during wire routing and synthesis.

It should be noted that with regard to plot 620, the sets
622-628 are determined based on layer traits having a same or

US 9,092,591 B2

13

similar routing area. A same or similar routing area refers to
the layer traits having a same or similar routing area on most
layers of the layer trait. For example, W10S201.17 B1 X3 and
W20S10L17 B1 X3, both use 3 tracks on B layers and below,
and two track on layer 8 and above. For W10S10L1D B1 X3
and W20S20L 15 B1 X3, these layer traits have a same routing
resource for layer 6 and above. For layers 1 to 5, which are
generally only vias for this particular layer trait, the routing
resource is 2 tracks versus 4 tracks, but since they are just vias,
the overall congestion cost are still similar.

Plot 630 in FIG. 6 shows the second level of pruning
performed by the mechanisms of the illustrative embodiment
in which layer traits having the same or similar congestion
costs are pruned. Thus, looking at the first region 622 in plot
620, only one layer trait is present and thus, it is selected for
inclusion in the second pruned layer trait listing represented
in plot 630. The second region 624 in plot 620 has two layer
traits having similar congestion costs and thus, one of these
two layer traits is selected for inclusion in the second pruned
layer trait listing depicted in plot 630. The same is true for
regions 626 and 628 which each have more than one layer trait
having the same congestion costs. Generally, the layer trait to
keep in the pruned layer trait set may be selected based on a
number of factors including timing costs and other character-
istics as previously discussed above.

In a third level of pruning, representative layer traits for the
same layer group are selected from those present in the sec-
ond pruned layer trait listing represented in plot 630 to
thereby generate those present in plot 640. As shown in plot
630, there is a single layer trait covering the portion of the
layer group 632 and three layer traits that cover the portion of
the layer group 634. Since there is only one layer trait for the
portion of layer group 632, it is selected for inclusion in the
third pruned layer trait listing. Since there are three layer traits
for the portion of the layer group 634, any of these may be
selected arbitrarily for inclusion in the third pruned layer trait
listing.

As mentioned above, the various levels of pruning per-
formed by the mechanisms of the illustrative embodiments
provide different levels of coarseness with regard to the wire
routing and synthesis operations. As such, different ones of
the first, second, and third pruned layer trait listings, or librar-
ies, may be used at different stages of the wire routing and
synthesis operations.

That is, going from the bottom up, the third pruned layer
trait listing provides the lowest accuracy with regard to wire
routing, but can be applied on a larger scale without dramati-
cally impacting runtime of the wire routing and synthesis
operations. This third pruned layer trait list may be used, for
example, with optimizations using Steiner tree based wiring
of'large scale portions of an integrated circuit design and with
relatively less accurate timing delay model, such as an Elmore
delay approximation model. The second pruned layer trait
list, or library, may be used with optimizations using Steiner
tree/global wiring based wiring of medium scale regions of
the integrated circuit design with the use of a more accurate
timing delay model, such as the RICE delay model. The first
pruned layer trait list may be used with optimizations using
detailed wiring of relatively small regions of the integrated
circuit design and a more accurate timing delay model, such
as RICE or the like. Thus, as one traversed from bottom to top
with regard to the pruned layer trait listings, the third pruned
layer trait list represents the least accurate but fastest listing
with regard to use in performing wire routings and synthesis,
while the first pruned layer trait list represents the most accu-
rate but slowest listing with regard to use in performing wire
routings and synthesis.

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 7 is an example block diagram of a layer trait library
pruning engine in accordance with one illustrative embodi-
ment. The elements shown in FIG. 7 may be implemented in
hardware, software, or any combination of hardware and
software. In one illustrative embodiment, the elements shown
in FIG. 7 are implemented as software instructions loaded
into one or more memories and then executed by one or more
processors of one or more data processing systems. For
example, the layer trait library pruning engine may work
with, as a preprocessor to, or as part of, a wire routing mecha-
nism of an integrated circuit design system. The layer trait
library pruning engine may be integrated into the integrated
circuit design system or may be a separate component that is
communicatively coupled to the integrated circuit design sys-
tem and may exchange information with the integrated circuit
design system through one or more interfaces. It should be
appreciated that one or more of the components in FIG. 7 may
instead be implemented as hardware logic, such as in an
Application Specific Integrated Circuit (ASIC) or the like.

As shown in FIG. 7, the layer trait library pruning engine
700 comprises a controller 710, a communication interface
720, an initial layer trait library generation engine 730, a
pruning engine 740, and a pruned layer trait library storage
system 750. The controller controls the overall operation of
the layer trait library pruning engine 700 and orchestrates the
operation of the other elements 720-750. The communication
interface 720 provides a communication pathway through
which data may be received and transmitted or passed to other
computing devices, other software modules, output to users,
or the like.

For example, through the communication interface 720, a
technology stack specification may be provided to the layer
trait library pruning engine 700 along with a listing of pos-
sible wirecodes that may be used in the integrated circuit
design. The designation of the technology stack specification
and listing of possible wirecodes may be provided, for
example, by a user via a user interface or client computer, an
automated tool, such as an integrated circuit design system, as
part of the input of a design specification, or the like. The
providing of this information to the layer trait library pruning
engine 700 may be in response to the initialization of an
integrated circuit design operation, such as a wire routing and
synthesis operation, in response to a specific request to gen-
erate pruned layer trait libraries for use with the integrated
circuit design process, or the like, provided by a user, auto-
mated tool, or the like.

Under the direction of the controller 710, the initial layer
trait library generation engine 730 performs an operation for
building the initial layer trait library based on the specifica-
tion of the technology stack and the possible wirecodes for the
integrated circuit design. That is, the initial layer trait library
generation engine 730 generates a verbose full layer trait
library comprising an entry for each possible combination of
layer stack range and wirecode. The layers in the stack may be
determined from the specification of the technology stack and
the wirecodes may be determined from the designation of'the
possible wirecodes passed to the layer trait library pruning
engine 700 or already stored in the layer trait library pruning
engine 700, such as a default set of wirecodes or the like.

Thus, for example, assuming there are M layers in the
technology stack, i.e.layersL,,L,,Ls,...,L,,, thenthereare
layer ranges [L;, Ly, [Las Lags - - -5 [Lagys Lagd Examples of
layer ranges include [M3 X3], [B1 X3], [E1 X3], etc. Assum-
ing that the maximum wire width supported by the wiring
router of the integrated circuit design system is K, and K also
defines the maximum spacing and via width, then there are K>
combinations of wirecode for each layer, where the wirecode

US 9,092,591 B2

15

is defined by [W, S| where W is the width which may be set
from 1 to K, and S is the spacing which may be set from 1 to
K. In addition, each layer has K possible choices for via
width. Given M metal layers and the maximum wire width K
supported by the wiring router, there are O(M*K™) possible
combinations considering all possible via stacks as well.
Thus, the initial layer trait library generation engine 730
generates this initial layer trait library using these various
combinations of wirecode and layer ranges.

The pruning engine 740 performs the operations of the
illustrative embodiments with regard to pruning the initial
layer trait library into one or more pruned layer trait libraries.
These pruned layer trait libraries provide various levels of
coarseness and accuracy with regard to wire routings and may
be provided for use at various stages of an integrated circuit
design process or flow.

The pruning engine 740, in order to perform the pruning
operation first groups all layers having the same RC parasitic.
The RC parasitic of the various layers may be specified in a
technology manual, as the result of a SPIC simulation, or the
like. For example, referring again to FIG. 4, all of layers M1
to M5 are considered to have the same RC parasitic charac-
teristics, all layers B1 to B2 are considered to have the same
RC parasitic characteristics, etc.

Assuming that this grouping generates N unique RC
groups, [Lls LS Ldil]s [Ld71+1s e Ldﬁz]s [Ldi{N-1}+1s s
L,,l, the pruning engine 740 pruned down from M layer
ranges to N layer ranges. For example, the layer range [M2
X3] prunes all layer ranges [M3 X3], [M4 X3], [M5 X3].
Similarly, layer range [B1 X3] prunes layer ranges [B2 X3]
and [B3 X3]. It should be noted, however, that if there are
unbalanced layer stacks, the boundary layer ranges may be
keptand not pruned, e.g., if there is only one E1 layer, then the
layer range [B3 X3] may be kept. Thus, layer traits having
layer ranges that are pruned in this manner may be eliminated
from a first pruned layer trait library generated by the pruning
engine 740, e.g., a layer trait having the layer range [M2 X3
may be kept as part of the first pruned layer trait library while
other layer traits in the initial layer trait library having layer
ranges [M3 X3], [M4 X3], [M5 X3] are removed and not
included in the first pruned layer trait library. Only layer traits
having layer ranges that are encompassed by layer traits hav-
ing other layer ranges may be eliminated in this way.

To reduce wiring router complexity and maximize the runt-
ime savings by utilizing the pruning mechanisms of the illus-
trative embodiments, the pruning engine 740 prunes any com-
plicated via stacks. That is, the via stack for layers under the
layer range should be either uniform (the same for all such
layers under the layer range) or monotonically increasing/
decreasing. If a layer trait specifies a via stack does not meet
these criteria, then the layer trait may be removed from inclu-
sion in the first pruned layer trait library. For example, if the
layer range is [B1 X3], all M1 to M5 layers either should have
the same via width, or a monotonically changing via width,
e.g., 2x wide via on layer M2, 3x wide via on layer M3, 4x
wide via on layer M4, or vice versa.

Layers above the lower bound I and layer L+1 use a default
wirecode since the default wirecode prunes all other combi-
nations with better congestion and same Steiner timing. For
example, for layer range [B1 X3], the wirecode specified in
the layer trait only applies to layers M1 to B2 (layer L+1).
Layers B3 to X3 all assume a default wire coding of a single
width and single spacing. The application of the layer traits to
only the [and L+1 layers relies on the assumption that
Steiner timing is only looking at the L. and L+1 layers. So, for
example, if the layer trait specifies double width, double
spacing for X1 now, since Steiner timing is still the same

25

40

45

55

16

(since only Bl and B2 matters here), and routing cost is
higher compared to single width, single spacing on X1, it is
determined that there is no need to define complicated wire
width, spacing for X1, which is redundant already.

The remaining layer traits in the layer trait library are then
pruned based on congestion and timing characteristics. For
example, the congestion may be defined as the number of
tracks specified by the wirecode of a layer trait. The timing
may be defined in terms of time of flight (ps/mm), reach
length for slew constraints, time of flight with coupling, and
the like. For two layer traits, one layer trait dominates the
other one if all metrics are better than the other one. For
example, if Qs timing and W is congestion, then if Qi<Q)j and
Wi>Wj, the layer trait I is redundant because no one trait
dominates the other. As a more concrete example, consider
two layer traits in which both layer traits have the same
routing pitches (3 tracks) on B layers and via stacks. Assume
that one layer trait, W10S20L.17 B1 X3, has a timing param-
eter of 81 ps/mm, and that the other layer trait, W20S10L.17
B1 X3, has a timing parameter of 70 ps/mm. In this scenario,
the first layer trait W10S20L.17 B1 X3 prunes the second
layer trait W20S10L17 B1 X3 since the first layer trait has
better timing metrics. However, if the second layer trait has a
better nominal timing, but the first layer trait has a better
coupling timing, then both layer traits would need to be kept
in the pruned layer trait library rather than eliminating the
second layer trait. Another example may be that the layer trait
W20S20LBD X1 X3 prunes the layer trait W30S15LBD X1
X3 since it has better time of flight (45 ps/mm versus 48
ps/mm) and less routing tracks, as may be determined from a
time of flight simulation, based on ideal buffering on a long
net with one layer trait. For example, if there is a 10 mm wire,
and it is determined that the ideal buffering is inserting a
buffer every 0.5 mm, then the delay of the 10 mm wire given
the best buffering can be computed in terms of ps/mm by
using delay/10 mm, as is generally known in the art.

The above operation by the pruning engine 740 results in a
first pruned layer trait listing or library in which redundant
layer traits are removed or pruned out. The pruning engine
740 may then perform a middle level clustering on the first
pruned layer trait library to generate a second pruned layer
trait library. The middle level clustering may involve, for
example, finding all layer traits with significant different RC
parasitic. The “significance” of a difference in RC parasitic
may be determined based on a predetermined threshold defin-
ing a value at or above which the difference is considered to be
significant. For example, if the time of flight difference is only
1 ps/mm, then the difference may be considered small, but if
the difference is 5 ps/mm, then the difference may be consid-
ered significant, where the threshold may be 4 ps/mm, for
example.

The result of the middle level clustering is a set of clusters
of layer traits having similar RC parasitics. In each cluster,
one layer trait for each wire width (wire pitch) value is
selected for inclusion in the second pruned layer trait library.
To select a layer trait for each wire width (or wire pitch) if
more than one layer trait is present for each wire width, the
nominal timing may be used instead of coupling timing to
select the layer trait to retain and prune the other layer traits.
Moreover, if any of the layer traits have via stacks specified,
then they may be pruned out.

The pruning engine 740 may then generate a third pruned
layer trait library from the second pruned layer trait library by
choosing a single/default layer trait for each layer group (for
example, there may be a single 13 layer stack with 4 layer
groups, where each layer group has the same RC parasitic
value such that M1 to M4 have one RC parasitic value, fol-

US 9,092,591 B2

17

lowed by alayer group comprising all 2S layers, a layer group
comprising all 4x layers, and a layer group comprising all 8x
layers). For each unbalanced layer in the layer stack, a single
layer trait is selected. For each other layer, the selected layer
trait may be arbitrarily selected.

Thus, the pruning engine 740 provides multiple levels of
pruned layer trait libraries for use by the wire router of the
integrated circuit design system when performing various
levels of wire routings, as previously discussed above. These
pruned layer trait libraries may be stored in the pruned layer
trait library storage system 750 for later use. For example,
these pruned layer trait libraries may be provided to a wire
router 780 of an integrated circuit design system 790, via the
communication interface 720, for use in performing wire
routing at various levels during the integrated circuit design
process or flow.

Thus, the illustrative embodiments provide mechanisms
for pruning the verbose full layer trait library into relatively
smaller sized layer trait libraries that reduce the runtime of the
wire routing due to the smaller size of libraries having to be
processed. The illustrative embodiments perform the pruning
by removing redundant layer traits from the verbose full layer
trait library and then performing clustering to generate addi-
tional layer trait libraries having different levels of granular-
ity.

FIG. 8 is a flowchart outlining an example operation for
pruning a layer trait library in accordance with one illustrative
embodiment. As an example, the operation outlined in FIG. 8
may be implemented by a layer trait library pruning engine,
such as shown in FIG. 7, either as a preprocessing operation
or as part of a wire routing and synthesis operation during the
design of an integrated circuit device for manufacture.

As shown in FIG. 8, the operation starts by receiving an
identification of a technology metal stack and the wirecodes
that can be used when performing wire routings (step 810). A
verbose full layer trait library is built using all of the possible
combinations of layer ranges and wirecodes (step 820). The
full layer trait library is pruned to remove redundant layer
traits and generate a first pruned layer trait library (step 830).
A middle level clustering is performed on the first pruned
layer trait library based on RC parasitics such that within a
cluster of layer traits having similar RC parasitics, alayer trait
is selected for inclusion for each wire width (step 840). This
results in a second pruned layer trait library. A coarse-level
clustering is performed on the second pruned layer trait
library to thereby select a single/default layer trait for each
layer stack and thereby generate a third pruned layer trait
library (step 850). The various pruned layer trait libraries are
stored for later use during wire routing (step 860). At some
time thereafter, the pruned layer trait libraries are provided to
a wire router which uses the various pruned layer trait librar-
ies at different levels of wire routing granularity to generate
an integrated circuit design (step 870). The resulting inte-
grated circuit design may then be output to a manufacturing
system for actually manufacturing the integrated circuit
device (step 880).

The mechanisms as described above are used in the fabri-
cation of integrated circuit chips. In particular, the mecha-
nisms of the illustrative embodiments may be used to gener-
ate layer trait libraries used during the wire routing operations
of'an IC design flow which results in a fabricated integrated
circuit chip or device. The resulting integrated circuit chips
can be distributed by the fabricator in raw wafer form (that is,
as a single wafer that has multiple unpackaged chips), as a
bare die, or in a packaged form. In the latter case the chip is
mounted in a single chip package (such as a plastic carrier,
with leads that are affixed to a motherboard or other higher

10

15

20

25

30

35

40

45

50

55

60

65

18

level carrier) or in a multichip package (such as a ceramic
carrier that has either or both surface interconnections or
buried interconnections). In any case the chip is then inte-
grated with other chips, discrete circuit elements, and/or other
signal processing devices as part of either (a) an intermediate
product, such as a motherboard, or (b) an end product. The
end product can be any product that includes integrated cir-
cuit chips, ranging from toys and other low-end applications
to advanced computer products having a display, a keyboard
or other input device, and a central processor. Moreover, the
end products in which the integrated circuit chips may be
provided may include game machines, game consoles, hand-
held computing devices, personal digital assistants, commu-
nication devices, such as wireless telephones and the like,
laptop computing devices, desktop computing devices, server
computing devices, or any other computing device.

As noted above, it should be appreciated that the illustra-
tive embodiments may take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In one
example embodiment, the mechanisms of the illustrative
embodiments are implemented in software or program code,
which includes but is not limited to firmware, resident soft-
ware, microcode, etc.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems and Ethernet cards are just a few of the cur-
rently available types of network adapters.

The description ofthe present invention has been presented
for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What is claimed is:

1. A method, in a data processing system comprising at
least one processor and at least one memory, for pruning a
layer trait library for use in wire routing in an integrated
circuit design process, comprising the following operations
performed by the data processing system:

receiving a plurality of wirecodes and a metal stack defi-

nition;

generating a verbose layer trait library based on all possible

combinations of the wirecodes and layers of the metal

stack definition, wherein generating the pruned layer

trait library comprises:

pruning the verbose layer trait library to remove redun-
dant layer traits to generate a first pruned layer trait

US 9,092,591 B2

19

library, wherein pruning the verbose layer trait library
to remove redundant layer traits comprises:
identifying layer traits in the verbose layer trait library
having a similar resistance-capacitance (RC) char-
acteristic to generate one or more layer trait groups
having a similar RC characteristic; and
selecting a representative layer trait from each group
ofthe one or more layer trait groups to represent the
layer traits in the group to be included in the first
pruned layer trait library;
performing clustering of layer traits in the first pruned
layer trait library; and
pruning the first layer trait library based on the clustering
of layer traits in the first pruned layer trait library to
generate a second pruned layer trait library;
generating a pruned layer trait library by pruning the ver-
bose layer trait library to remove redundant layer traits
from the verbose layer trait library;
storing the pruned layer trait library for performing wire
routing of an integrated circuit design; and
fabricating an integrated circuit device based on the inte-
grated circuit design, including the wire routing per-
formed based on the stored pruned layer trait library.
2. The method of claim 1, further comprising performing

wire routing of the integrated circuit design based on the
stored pruned layer trait library.

3. The method of claim 1, wherein the representative layer

trait that is selected from each group is selected based on one
ormore of resource costs associated with the layer traits in the
group, delay and timing characteristics of the layer traits in
the group, time of flight of layer traits in the group, reach limit
of layer traits in the group, coupling timing of traits in the
group, or routing cost of layer traits in the group.

4. The method of claim 1, wherein generating the pruned

layer trait library further comprises:

performing clustering of layer traits in the second pruned
layer trait library; and

pruning the second pruned layer trait library based on the
clustering of layer traits in the second pruned layer trait
library to generate a third pruned layer trait library.

5. The method of claim 4, wherein:

performing clustering of layer traits in the second pruned
layer trait library comprises clustering layer traits
according to similar congestion levels such that one or
more clusters of layer traits are generated where each
cluster has layer traits having a similar congestion level,
and

pruning the second pruned layer trait library based on the
clustering of layer traits in the second pruned layer trait
library to generate a third pruned layer trait library com-
prises pruning each of the clusters in the one or more
clusters.

6. The method of claim 5, wherein pruning the second

pruned layer trait library based on the clustering of layer traits
in the second pruned layer trait library to generate a third
pruned layer trait library comprises selecting, from each clus-
ter in the one or more clusters, a representative layer trait from
the layer traits of the cluster based on at least one of resource
costs or timing and delay characteristics of the layer traits of
the cluster.

7. The method of claim 4, further comprising:

performing a wire routing process on the integrated circuit
design using the first, second, and third pruned layer trait
libraries, where each of the first, second, and third
pruned layer trait libraries are used at a different granu-
larity of the wire routing process.

10

20

25

40

45

50

65

20

8. The method of claim 7, wherein the third pruned layer
trait library is used at a coarsest level of granularity ofthe wire
routing process and the first pruned layer trait library is used
at a finest level of granularity of the wire routing process.

9. The method of claim 1, wherein the layer traits each
comprise a combination of wirecode and layer range.

10. A computer program product comprising a computer
readable storage medium having a computer readable pro-
gram stored therein, wherein the computer readable program,
when executed on a computing device, causes the computing
device to:

receive a plurality of wirecodes and a metal stack defini-

tion;

generate a verbose layer trait library based on all possible

combinations of the wirecodes and layers of the metal
stack definition, wherein the computer readable pro-
gram causes the computing device to generate the
pruned layer trait library at least by:
pruning the verbose layer trait library to remove redun-
dant layer traits to generate a first pruned layer trait
library, wherein the computer readable program
causes the computing device to prune the verbose
layer trait library to remove redundant layer traits at
least by:
identifying layer traits in the verbose layer trait library
having a similar resistance-capacitance (RC) char-
acteristic to generate one or more layer trait groups
having a similar RC characteristic; and
selecting a representative layer trait from each group
ofthe one or more layer trait groups to represent the
layer traits in the group to be included in the first
pruned layer trait library;
performing clustering of layer traits in the first pruned
layer trait library; and
pruning the first layer trait library based on the clustering
of layer traits in the first pruned layer trait library to
generate a second pruned layer trait library;
generate a pruned layer trait library by pruning the verbose
layer trait library to remove redundant layer traits from
the verbose layer trait library;

store the pruned layer trait library for performing wire

routing of an integrated circuit design; and

fabricate an integrated circuit device based on the inte-

grated circuit design, including the wire routing per-
formed based on the stored pruned layer trait library.

11. The computer program product of claim 10, wherein
the computer readable program further causes the computing
device to perform wire routing of the integrated circuit design
based on the stored pruned layer trait library.

12. The computer program product of claim 10, wherein
the representative layer trait that is selected from each group
is selected based on one or more of resource costs associated
with the layer traits in the group, delay and timing character-
istics of the layer traits in the group, time of flight of layer
traits in the group, reach limit of layer traits in the group,
coupling timing of traits in the group, or routing cost of layer
traits in the group.

13. The computer program product of claim 10, wherein
the computer readable program further causes the computing
device to generate the pruned layer trait library further at least
by:

performing clustering of layer traits in the second pruned

layer trait library; and

pruning the second pruned layer trait library based on the

clustering of layer traits in the second pruned layer trait
library to generate a third pruned layer trait library.

US 9,092,591 B2

21

14. The computer program product of claim 13, wherein:

performing clustering of layer traits in the second pruned

layer trait library comprises clustering layer traits
according to similar congestion levels such that one or
more clusters of layer traits are generated where each
cluster has layer traits having a similar congestion level,
and

pruning the second pruned layer trait library based on the

clustering of layer traits in the second pruned layer trait
library to generate a third pruned layer trait library com-
prises pruning each of the clusters in the one or more
clusters.

15. The computer program product of claim 14, wherein
pruning the second pruned layer trait library based on the
clustering of layer traits in the second pruned layer trait
library to generate a third pruned layer trait library comprises
selecting, from each cluster in the one or more clusters, a
representative layer trait from the layer traits of the cluster
based on at least one of resource costs or timing and delay
characteristics of the layer traits of the cluster.

16. The computer program product of claim 13, wherein
the computer readable program further causes the computing
device to:

perform a wire routing process on the integrated circuit

design using the first, second, and third pruned layer trait
libraries, where each of the first, second, and third
pruned layer trait libraries are used at a different granu-
larity of the wire routing process.

17. The computer program product of claim 16, wherein
the third pruned layer trait library is used at a coarsest level of
granularity of the wire routing process and the first pruned
layer trait library is used at a finest level of granularity of the
wire routing process.

18. The computer program product of claim 10, wherein
the layer traits each comprise a combination of wirecode and
layer range.

19. An apparatus, comprising:

a processor; and

20

35

22

a memory coupled to the processor, wherein the memory
comprises instructions which, when executed by the
processor, cause the processor to:

receive a plurality of wirecodes and a metal stack defini-
tion;

generate a verbose layer trait library based on all possible
combinations of the wirecodes and layers of the metal
stack definition, wherein the instructions cause the pro-
cessor to generate the pruned layer trait library at least
by:
pruning the verbose layer trait library to remove redun-

dant layer traits to generate a first pruned layer trait

library, wherein the instructions cause the processor

to prune the verbose layer trait library to remove

redundant layer traits at least by:

identifying layer traits in the verbose layer trait library
having a similar resistance-capacitance (RC) char-
acteristic to generate one or more layer trait groups
having a similar RC characteristic; and

selecting a representative layer trait from each group
ofthe one or more layer trait groups to represent the
layer traits in the group to be included in the first
pruned layer trait library;

performing clustering of layer traits in the first pruned

layer trait library; and

pruning the first layer trait library based on the clustering of
layer traits in the first pruned layer trait library to gen-
erate a second pruned layer trait library;

generate a pruned layer trait library by pruning the verbose
layer trait library to remove redundant layer traits from
the verbose layer trait library;

store the pruned layer trait library for performing wire
routing of an integrated circuit design; and

fabricate an integrated circuit device based on the inte-
grated circuit design, including the wire routing per-
formed based on the stored pruned layer trait library.

#* #* #* #* #*

